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I. REVIEW

Last time we:
(1) Reviewed the basics of Laurent series, which are doubly infinite series of the form

∞

∑
n=−∞

an(z− z0)
n = · · ·+ a−2

(z− z0)2 +
a−1

z− z0
+ a0 + a1(z− z0) + a2(z− z0)

2 + · · ·

and converge on annuli.
(2) Discussed the three types of singularities that can occur for a holomorphic func-

tion defined on a punctured disc: removable singularities, poles, and essential
singularities.

(3) Defined meromorphic functions on subsets of C as those with no worse than poles.
(4) Extended the definition of holomorphic and meromorphic functions to Riemann

surfaces. A function f : X → C is holomorphic (resp., meromorphic) iff f ◦ ϕ−1 is
for every coordinate chart ϕ on X. We defined a morphism h : X → Y of Riemann
surfaces similarly, by requiring that ψ ◦ h ◦ ϕ−1 be holomorphic for every chart ϕ
on X and ψ on Y.

II. MORPHISMS OF RIEMANN SURFACES (CONT.)

Let X be a Riemann surface, P ∈ X, and f : X → C be a function. We defined f to be
holomorphic at P if f ◦ ϕ−1 : U → C is holomorphic for every coordinate chart (U, ϕ)
containing P. But as the next result shows, it actually suffices to check on just one chart
containing P.

Lemma 1. Let X be a Riemann surface, P ∈ X, and f : X → C be a function such that there
exists a coordiante chart (U, ϕ) containing P such that f ◦ ϕ−1 : U → C is holomorphic. Then f
is holomorphic at P.
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Proof. Given another chart (V, ψ) containing P, then

f ◦ ψ−1 = ( f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1)

wherever these compositions are defined. Since ϕ and ψ are both charts near P, then
they are holomorphically compatible, so ϕ ◦ ψ−1 is holomorphic. Thus f ◦ ψ−1 is the
composition of holomorphic maps, hence is holomorphic. �

Remark 1. The analogous fact is true of holomorphic maps f : X1 → X2 of Riemann
surfaces: we can replace the “for all” in the definition with a “there exists”. More precisely,
we can check that f is holomorphic by checking on specific open covers of X1 and X2.

II.1. More automorphism groups, more complex analysis. Last time we determined
Aut(P1) and Aut(C).

Proposition 2. The automorphism groups of P1 and C are:

Aut(P1) =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ C, ad− bc 6= 0

}
∼= PGL2(C) ∼= PSL2(C)

Aut(C) = {z 7→ az + b : a, b ∈ C} .

This time we’ll compute Aut(H) and Aut(D).

Proposition 3. The automorphism groups of D and H are:

Aut(D) =

{
z 7→ az + b

bz + a
: a, b ∈ C, |a|2 − |b|2 = 1

}

=

{
z 7→ eiθ z− α

1− αz
: α ∈ C, |α| < 1, θ ∈ R

}
∼= PSU1,1(R) ;

Aut(H) =
{

z 7→ az + b
cz + d

: a, b, c, d ∈ R, ad− bc = 1
}

∼= PSL2(R)

To prove this, we’ll need the following results from complex analysis.

Theorem 4 (Maximum modulus principle). Let U ⊆ C be a domain and f : U → C be
holomorphic. Suppose that there exists a point z0 ∈ U such that | f (z)| ≤ | f (z0)| for all z ∈ U.
Then f is constant.

Remark 5. The proof of this result uses the Cauchy integral formula to show that the sets

V1 := {z ∈ U : | f (z)| = | f (z0)|} V2 := {z ∈ U : | f (z)| < | f (z0)|}
are both open. Since U is connected and z0 ∈ V1, then V2 = ∅. Thus | f | is constant,
and by considering the real- and imaginary parts of f one can use the Cauchy-Riemann
equations to show that this implies that f itself is constant.

Corollary 6. Let D ⊆ C be a bounded domain and let f : D → C be a continuous function that
is holomorphic on D. Then | f (z)| obtains a maximum on some point of the boundary ∂D.
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Proof. Since D is compact and | f | is continuous, then it attains a maximum. If the maxi-
mum occurs at some z0 ∈ D, then f is constant on D, hence constant on D by continuity.
Thus in this case | f | attains a maximum, its only value, on every point of ∂D.

Otherwise | f | attains a maximum on D \ D = ∂D. �

Lemma 2 (Schwarz). Suppose that f is holomorphic on the open unit disc D = D(0, 1) with
f (0) = 0 and | f (z)| ≤ 1 for all z ∈ D. Then | f ′(0)| ≤ 1 and | f (z)| ≤ |z| for all z ∈ D.
Furthermore, if | f ′(0)| = 1 or | f (w)| = |w| for some w ∈ D, then there exists c ∈ C with
|c| = 1 such that f (z) = cz for all z ∈ D.

Proof. Consider the function

g : D → C

z 7→
{

f (z)/z if z 6= 0
f ′(0) if z = 0 .

We claim that g is holomorphic on D. Note that g is holomorphic on the punctured disc
D∗ := D∗(0, 1) and since

g(0) = f ′(0) = lim
z→0

f (z)
z

then g is also continuous at z = 0. By Riemann’s removable singularity theorem, then g
is holomorphic on all of D.

Given z ∈ D, fix some r ∈ R with |z| < r < 1. By the previous corollary, |g| attains a
maximum on ∂D, so

|g(z)| ≤ max
|ζ|=r
|g(ζ)| = max

|zeta|=r

| f (ζ)|
|ζ| ≤

1
r

.

Since r was arbitrary, we can let r → 1 which implies that |g(z)| ≤ lim
r→1

1/r = 1. Since

z ∈ D was arbitrary, then |g(z)| ≤ 1 for all z ∈ D. Then

| f (z)| = |g(z)||z| ≤ |z|

for all z ∈ D and | f ′(0)| = |g(0)| ≤ 1.
Moreover, we must have |g(z)| < 1 for all z ∈ D, unless g is a constant function g(z) = c

for some c ∈ C with |c| = 1. This means that | f ′(0)| < 1 and | f (z)| < |z| for all z ∈ D∗,
unless f (z) = cz with |c| = 1. �

With these results in hand, we can now prove Proposition 2.

Proof of Proposition 2. Suppose f : D→ D is an automorphism and let λ = f (0). We claim

that M(z) =
z− λ

1− λz
preserves D. Given z ∈ D, then |z| ≤ 1. Then

|M(z)|2 =
z− λ

1− λz
z− λ

1− λz
=
|z|2 − λz− λz + |λ|2

1− λz− λz + |λ|2|z|2
.
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Thus |M(z)|2 ≤ 1 ⇐⇒
|z|2 − λz− λz + |λ|2

1− λz− λz + |λ|2|z|2
≤ 1 ⇐⇒ |z|2������−λz− λz + |λ|2 ≤ 1������−λz− λz + |λ|2|z|2

⇐⇒ |z|2(1− |λ|2) = |z|2 − |λ|2|z|2 ≤ 1− |λ|2

and this last inequality holds because |z|2 ≤ 1. Thus M(D) ⊆ D and M(λ) = 0.
Note that M : D→ D is an automorphism. Since(

1 −λ
−λ 1

)(
1 λ
λ 1

)
=

(
1− |λ|2 0

0 1− |λ|2
)

we see that

M−1(z) =
z + λ

λz + 1
.

Letting h = M ◦ f then h is an automorphism, and thus so is h−1. By Schwarz’s Lemma
applied to h, we have |h(z)| ≤ |z| for all z, and applying it to h−1, then |h−1(w)| ≤ |w| for
all w. Writing w = h(z), then

|z| = |h−1(h(z))| = |h−1(w)| ≤ |w| = |h(z)|
for all z ∈ D, so |h(z)| = |z| for all z ∈ D. Applying the second part of Schwarz’s Lemma,
then there exists c ∈ C with |c| = 1 such that h(z) = cz for all z. Writing c = eiθ for some
θ ∈ R, then (M ◦ f )(z) = eiθz for all z. Composing with M−1, we find

f (z) = M−1 ◦M ◦ f (z) = M−1(eiθz) =
eiθz + λ

λeiθz + 1
= eiθ z + e−iθλ

1 + eiθλz

= eiθ z− α

1− αz

where α = −eiθλ. (The other form for the matrices can be obtained from this one, too.)

As you will show in the homework, H and D are isomorphic via the map T : z 7→ z− i
z + i

.

Thus given f ∈ Aut(H), then T ◦ f ◦ T−1 ∈ Aut(D). Thus f is a Möbius transformation.
Note that T maps the real line to the unit circle: given t ∈ R, then

f (t) =
t− i
t + i

=
t− i
t− i

.

A complex number divided by its conjugate always has norm 1, so T(R) is contained in
the unit circle. These facts can be used to show that

f (z) =
az + b
cz + d

with
(

a b
c d

)
∈ PSL2(R) .

�

Remark 7.
(1) We saw last time that Aut(P1) ∼= PSL2(C). One can show that Aut(P1) acts triply

transitively on P1: given z1, z2, z3, w1, w2, w3 ∈ P1, there exists M ∈ PSL2(C) such
that M(xj) = wj for j = 1, 2, 3.
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(2) We defined the torus C/Λ by quotienting C by the subgroup

{z 7→ z + ω : ω ∈ Λ} ⊆ Aut(C) .

Later we will consider quotients of H and D by subgroups of their automorphism
groups.

II.2. Order of vanishing and ramification. In a neighborhood of a point P ∈ X, a mor-
phism F : X → Y is an m-to-1 map. We can make this idea precise using the notion of
multiplicity.

Definition 8. Let X be a Riemann surface, P ∈ X, and f ∈ M(X) be a meromorphic
function. Let ϕ be a centered coordinate map at P, so ϕ(P) = 0. Then f can represented
by the Laurent series f ◦ ϕ−1(z) = ∑

n
anzn. The order (of vanishing) of f at P, denoted by

ordP( f ) is the smalles n such that an 6= 0:

ordP( f ) := min{n ∈ Z : an 6= 0} .

If ordP( f )n ≥ 1, then f has a zero of order n at P and if ordP( f ) = −n < 0, then f has a
pole of order n at P.

Remark 9. One can show that the order is independent of the choice of coordinate chart.

Lemma 3. Let f , g ∈ M(X) be meromorphic functions on a Riemann surface X. Then
(1) ordP( f g) = ordP( f ) + ordP(g);
(2) ordP(1/ f ) = − ordP( f );
(3) ordP( f + g) ≥ min{ordP( f ), ordP(g)}.

Remark 10. This shows that ordP is a discrete valuation onM(X) for each point P.

Definition 11. Let f : X → Y be a morphism of Riemann surfaces, P ∈ X. Let ψ be a chart
of Y centered at f (P), so ψ( f (P)) = 0. The integer eP( f ) or mP( f ) given by

eP( f ) := ordP(ψ ◦ f )

is the ramification index or multiplicity of f at P. Equivalently,

eP( f ) = 1 + ordP(ψ ◦ f )′

whether ψ is a centered chart or not.
If eP( f ) ≥ 2, then P ∈ X is ramification point or branch point of f , with ramification index

eP( f ). A branch value is the image of a ramification point. Equivalently, we say that f is
ramified above Q ∈ Y if there is some P ∈ f−1(Q) with eP( f ) ≥ 2 and f is ramified at P ∈ X
if P ∈ X and eP( f ) ≥ 2.

By choosing our charts judiciously, we can actually find a local representation of a mor-
phism of the form z 7→ zm.

Proposition 12 (Local Normal Form). Let F : X → Y be a nonconstant morphism of Riemann
surfaces. Fix P ∈ X and let m = eP(F). Then for every chart ψ : V → V̂ on Y centered at F(P),
there exists a chart ϕ : U → Û on X centered at P such that

(ψ ◦ F ◦ ϕ−1)(z) = zm .
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Proof. Fix a chart ψ on Y centered at F(P) (i.e., ψ(F(P)) = 0), and choose any chart θ :
W → Ŵ centered at P. Then the Taylor series for the function T(w) := (ψ ◦ F ◦ θ−1)(w) is
of the form

T(w) =
∞

∑
j=m

cjwj

where cm 6= 0 and m = mP(F). (Since we picked a centered chart, we have T(0) = 0.)
Factoring out wm, we have T(w) = wmS(w) where S is a holomorphic function at w = 0
and S(0) 6= 0. Thus we can define a branch of the mth root function near S(0), so there
exists a holomorphic function R defined in a neighborhood of 0 such that R(w)m = S(w).
Let η(w) = wR(w), so

T(w) = wmS(W) = (wR(w))m = (η(w))m .

Then
η′(w) = wR′(w) + R(w)

so η′(0) = R(0) = m
√

S(0) 6= 0, so near 0 η is invertible by the Implicit Function Theorem.
Then ϕ := η ◦ θ is also a chart on X defined near P, and since

η(ψ(P)) = η(0) = 0 · R(0) = 0

it is also centered at P. Thinking of z = η(w) as our new coordinate near P, then we have

(ψ ◦ F ◦ ϕ−1)(z) = (ψ ◦ F ◦ θ−1 ◦ η−1)(z) = T(η−1(z)) = (η(η−1(z)))m = zm .

�

Lemma 4. Let X : f (x, y) = 0 be a smooth affine plane curve. Consider the projection π : X →
C, (x, y) 7→ x. Then π is ramified at P = (x0, y0) ∈ X iff fy(P) = 0.

Proof. Suppose first that fy(P) 6= 0. Then π is a chart on X near P, so π has multiplicity
1 at P. Conversely, suppose that fy(P) = 0. Then ρ : (x, y) 7→ y is a chart on X near
P. By the Implicit Function Theorem, then there exists a holomorphic function g(y) such
that X is locally the graph of g, so f (g(y), y) = 0 for all y in the domain of g. Implicitly
differentiating with respect to y, we have

fx(g(y), y)g′(y) + fy(g(y), y) = 0

for all y, so in particular

0 = fx(g(y0), y0)g′(y0) + fy(g(y0), y0) = fx(P)g′(y0) + fy(P) = fx(P)g′(y0) .

Since X is smooth and fy(P) = 0, then fx(P) 6= 0, so we must have g′(y0) = 0. �

Example 13. Let E : Y2Z = X3 − Z3 and consider the map π : E → P1, [X : Y : Z] 7→
[X : Z]. On the affine chart U2 where Z 6= 0, E is given by the equation y2 = x3− 1 where
x = X/Z and y = Y/Z. Denoting the homogeneous coordinates of P1 by S, T, then π

carries U2 to the open subset V1 of P1 where T 6= 0. On V1 we have the affine coordinate
S/T, so the local expression of π as a map U2 → V1 is simply (x, y) 7→ x. Letting h =
y2− (x3− 1), by the above lemma, π is unramified at all points where hy = 2y 6= 0. Thus
it remains to consider the points where y = 0, consisting of (ζ j, 0) for j = 0, 1, 2, where ζ
is a primitive third root of unity.
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At such a point the projection (x, y) 7→ y is a coordinate chart, so there exists a holo-
morphic function g(w) such that

0 = h(g(w), w) = w2 − (g(w)3 − 1)

and g(0) = ζ j. Write g(w) = ∑
n≥0

anwn, so a0 = g(0) = ζ j. Differentiating the above, we

find

0 = hx(g(w), w)g′(w) + hy(g(w), w) = 3g(w)2g′(w) + 2w

=⇒ g′(w) =
−2w

3g(w)
= −2

3
w

g(w)
.

Thus

a1 = g′(0) = −2
3

0
g(0)

= −2
3

0
ζ j = 0

so a1 = 0, as expected. Differentiating again, we find

g′′(w) = −2
3

g(w)− wg′(w)

g(w)2 .

Then

2a2 = g′′(0) = −2
3

g(0)− 0 · g′(0)
g(0)2 = −2

3
a0

a02 = −2
3

ζ j

ζ2j = −
2
3

ζ−j .

Thus m = 2 is the smallest n ≥ 1 such that an 6= 0, so π has ramification index eP(π) = 2
for P = (ζ j, 0). (There’s one other point we need to check; what is it?)
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