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I. REVIEW

Last time we:
(1) Reviewed the basics of Laurent series, which are doubly infinite series of the form

n:zma”(z —z0)" = F (z a—_220)2 + za__lzo +ag +a1(z — 20) +a2(z —20)* + -
and converge on annuli.

(2) Discussed the three types of singularities that can occur for a holomorphic func-
tion defined on a punctured disc: removable singularities, poles, and essential
singularities.

(3) Defined meromorphic functions on subsets of C as those with no worse than poles.

(4) Extended the definition of holomorphic and meromorphic functions to Riemann
surfaces. A function f : X — C is holomorphic (resp., meromorphic) iff f o ¢! is
for every coordinate chart ¢ on X. We defined a morphism / : X — Y of Riemann
surfaces similarly, by requiring that ¢ o 1 0 ¢! be holomorphic for every chart ¢
on X and ¢ponY.

II. MORPHISMS OF RIEMANN SURFACES (CONT.)

Let X be a Riemann surface, P € X, and f : X — C be a function. We defined f to be

holomorphic at P if fo ¢! : U — C is holomorphic for every coordinate chart (U, ¢)
containing P. But as the next result shows, it actually suffices to check on just one chart
containing P.

Lemma 1. Let X be a Riemann surface, P € X, and f : X — C be a function such that there

exists a coordiante chart (U, ¢) containing P such that f o ¢~ : U — C is holomorphic. Then f
is holomorphic at P.
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Proof. Given another chart (V,y) containing P, then

foyTl=(fog Ho(poy™)
wherever these compositions are defined. Since ¢ and ¢ are both charts near P, then

they are holomorphically compatible, so ¢ o ¢y~ ! is holomorphic. Thus f o ¢! is the
composition of holomorphic maps, hence is holomorphic. U

Remark 1. The analogous fact is true of holomorphic maps f : X; — X, of Riemann
surfaces: we can replace the “for all” in the definition with a “there exists”. More precisely,
we can check that f is holomorphic by checking on specific open covers of X; and X».

II.1. More automorphism groups, more complex analysis. Last time we determined
Aut(PP1) and Aut(C).

Proposition 2. The automorphism groups of P! and C are:

1 az+b B
Aut(lP*) = {z — oid ca,b,c,d € C,ad — bc # 0}
= PGL,(C) = PSL,(C)
Aut(C) ={zw+—az+b:abeC}.
This time we’ll compute Aut($)) and Aut(D).

Proposition 3. The automorphism groups of © and $) are:
az+b
bz+a

Aut(®) = {zv—> :a,beC,|a|2—|b|2:1}

:{zweie%:aec,]a|<1,eeﬂi}

Aut(9) = {z — o ca,b,c,d € R,ad — bc = 1}
>~ PSL,(R)

To prove this, we'll need the following results from complex analysis.

Theorem 4 (Maximum modulus principle). Let U C C be a domain and f : U — C be
holomorphic. Suppose that there exists a point zg € U such that |f(z)| < |f(zo)]| for all z € U.
Then f is constant.

Remark 5. The proof of this result uses the Cauchy integral formula to show that the sets

Vii={zelU:|f(2)| =If(z0)|} Va:={zeU:[f(z)] <I|f(z0)[}
are both open. Since U is connected and zy € Vi, then V, = &. Thus |f] is constant,

and by considering the real- and imaginary parts of f one can use the Cauchy-Riemann
equations to show that this implies that f itself is constant.

Corollary 6. Let D C C be a bounded domain and let f : D — C be a continuous function that

is holomorphic on D. Then |f(z)| obtains a maximum on some point of the boundary oD.
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Proof. Since D is compact and |f| is continuous, then it attains a maximum. If the maxi-
mum occurs at some zy € D, then f is constant on D, hence constant on D by continuity.
Thus in this case |f| attains a maximum, its only value, on every point of 9D.

Otherwise | f| attains a maximum on D \ D = 9D. O

Lemma 2 (Schwarz). Suppose that f is holomorphic on the open unit disc D = D(0,1) with
f(0) = 0and |f(z)] < 1forallz € D. Then |f'(0)| < 1and |f(z)| < |z| forall z € D.
Furthermore, if |f'(0)] = 1 or |f(w)| = |w]| for some w € D, then there exists ¢ € C with
\c| = 1such that f(z) = cz forall z € D.

Proof. Consider the function
g:D—=C

f(z)/z if z#0
2 {f’(o) if z=0.

We claim that g is holomorphic on D. Note that g is holomorphic on the punctured disc
D* := D*(0,1) and since

0) = £/(0) = lim L2
§(0) = £/(0) = lim 1
then ¢ is also continuous at z = 0. By Riemann’s removable singularity theorem, then g
is holomorphic on all of D.

Given z € D, fix some r € R with |z| < r < 1. By the previous corollary, |g| attains a
maximum on 9D, so

max2(0)| — max @
3(2)| < max[g(0)] = max V2 <

N | =

Since r was arbitrary, we can let r — 1 which implies that |g(z)| < lirr} 1/r = 1. Since
r—r

z € D was arbitrary, then |g¢(z)| < 1forall z € D. Then

f(2)] = [8(2)[]z] <[]

forallz € D and |f'(0)| = |g(0)| < 1.

Moreover, we must have |¢(z)| < 1forallz € D, unless g is a constant function g(z) = ¢
for some ¢ € C with |c| = 1. This means that |f'(0)| < 1 and |f(z)| < |z| for all z € D*,
unless f(z) = cz with |c| = 1. O

With these results in hand, we can now prove Proposition

Proof of Proposition[2} Suppose f : ® — D is an automorphism and let A = £(0). We claim

that M(z) = 1Z -
— AZ

preserves ©. Given z € ®, then |z| < 1. Then

M(2)2 = z—_/\ z—_)t _ |z|2—_AZ_—Xz+|A|2 .
1—Az1—-Az 1—AZ—Az+|A|%|z]?
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Thus [M(2)]? <1 <
2 —_X /\2
ZE=AZ=AZH AP g s =T 4 AP < 12A5 =T + A2
1—AZ — Az + |A]2|z|2
= [2P1=[AP) = 2P = [APJ2]* < 1= AP

and this last inequality holds because |z|? < 1. Thus M(®) C © and M(A) = 0.
Note that M : © — D is an automorphism. Since

(OG-0 )

_ z4+ A
M7H(z) T Azl

Letting i = M o f then & is an automorphism, and thus so is #~!. By Schwarz’s Lemma
applied to 1, we have |(z)| < |z| for all z, and applying it to 1!, then |1~ (w)| < |w| for
all w. Writing w = h(z), then

2| = [h71(h(2))] = [h~(w)| < Jw| = |h(z)]
forallz € D, so [h(z)| = |z| forall z € D. Applying the second part of Schwarz’s Lemma,
then there exists ¢ € C with |c[ = 1 such that h(z) = cz for all z. Writing ¢ = e for some
6 € R, then (Mo f)(z) = ¢z for all z. Composing with M}, we find
ez A 02t e A
Aeifz +1 1+eifAz

we see that

f(z) =M oMo f(z) = M~ (e"2)

g £ — &
= el _—
1—az
where « = —¢'?A. (The other form for the matrices can be obtained from this one, too.) .

As you will show in the homework, $) and © are isomorphic viathemap T : z — ot

Thus given f € Aut($)), then To fo T~ € Aut(®). Thus f is a Mobius transformation.
Note that T maps the real line to the unit circle: given t € R, then

iyt

Tt E—i
A complex number divided by its conjugate always has norm 1, so T(IR) is contained in
the unit circle. These facts can be used to show that

az+b ) a b
f(z) = p— with (c d) € PSL,(R).

4

Remark 7.

(1) We saw last time that Aut(IP!) = PSL,(C). One can show that Aut(IP!) acts triply
transitively on IP': given z1,2zy,23, W1, Wy, W3 € P!, there exists M € PSL,(C) such
that M(x]) = W;j fOI‘j =1,2,3.
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(2) We defined the torus C/A by quotienting C by the subgroup
{z—z4+w:we A} C Aut(C).
Later we will consider quotients of $ and ® by subgroups of their automorphism

groups.

I1.2. Order of vanishing and ramification. In a neighborhood of a point P € X, a mor-
phism F : X — Y is an m-to-1 map. We can make this idea precise using the notion of
multiplicity.

Definition 8. Let X be a Riemann surface, P € X, and f € M(X) be a meromorphic
function. Let ¢ be a centered coordinate map at P, so ¢(P) = 0. Then f can represented

by the Laurent series f o ¢~ 1(z) = Y _a,z". The order (of vanishing) of f at P, denoted by
ordp(f) is the smalles n such that ann# 0:
ordp(f) :=min{n € Z :a, # 0}.
If ordp(f)n > 1, then f has a zero of order n at P and if ordp(f) = —n < 0, then f has a
pole of order n at P.

Remark 9. One can show that the order is independent of the choice of coordinate chart.

Lemma 3. Let f, g € M(X) be meromorphic functions on a Riemann surface X. Then

(1) ordp(fg) = ordp(f) + ordp(g);
(2) ordp(1/f) = —ordp(f);
(3) ordp(f + g) > min{ordp(f),ordp(g)}

Remark 10. This shows that ordp is a discrete valuation on M (X) for each point P.

Definition 11. Let f : X — Y be a morphism of Riemann surfaces, P € X. Let i be a chart
of Y centered at f(P), so (f(P)) = 0. The integer ep(f) or mp(f) given by

ep(f) :=ordp(yo f)

is the ramification index or multiplicity of f at P. Equivalently,

ep(f) =14 ordp(po f)

whether ¢ is a centered chart or not.
If ep(f) > 2, then P € X is ramification point or branch point of f, with ramification index
ep(f). A branch value is the image of a ramification point. Equivalently, we say that f is

ramified above Q € Y if there is some P € f~1(Q) with ep(f) > 2 and f is ramified at P € X
if P € Xandep(f) > 2.

By choosing our charts judiciously, we can actually find a local representation of a mor-
phism of the form z — z".

Proposition 12 (Local Normal Form). Let F : X — Y be a nonconstant morphism of Riemann
surfaces. Fix P € X and let m = ep(F). Then for every chart ¢ : V.— V on Y centered at F(P),
there exists a chart ¢ : U — U on X centered at P such that

(poFop ™)) =2".



Proof. Fix a chart i on Y centered at F(P) (i.e., (F(P)) = 0), and choose any chart 6 :

W — W centered at P. Then the Taylor series for the function T(w) := (o Fo 8~ 1)(w) is
of the form

T(w) =Y cjw
j=m

where ¢, # 0 and m = mp(F). (Since we picked a centered chart, we have T(0) = 0.)
Factoring out w™, we have T(w) = w™S(w) where S is a holomorphic function at w = 0

and $(0) # 0. Thus we can define a branch of the m™ root function near S(0), so there
exists a holomorphic function R defined in a neighborhood of 0 such that R(w)™ = S(w).
Let 7(w) = wR(w), so
T(w) = w"S(W) = (wR(w))™ = (n(w))".
Then
7' (w) = wR'(w) + R(w)

so'(0) = R(0) = {/S(0) # 0, so near 0 7 is invertible by the Implicit Function Theorem.
Then ¢ := 5 o 0 is also a chart on X defined near P, and since

7((P)) = 1(0) =0-R(0) =0

it is also centered at P. Thinking of z = #(w) as our new coordinate near P, then we have

(poFog )(z) = (poFob oy )(z) =T(n '(2)) = (y(y~" ()" = 2"
O

Lemma 4. Let X : f(x,y) = 0 be a smooth affine plane curve. Consider the projection 1t : X —
C, (x,y) — x. Then m is ramified at P = (xo,yo) € X iff fy(P) = 0.

Proof. Suppose first that f,(P) # 0. Then 7 is a chart on X near P, so 77 has multiplicity
1 at P. Conversely, suppose that f,(P) = 0. Then p : (x,y) + y is a chart on X near
P. By the Implicit Function Theorem, then there exists a holomorphic function g(y) such
that X is locally the graph of g, so f(g(v),y) = 0 for all y in the domain of g. Implicitly
differentiating with respect to y, we have

fx(8W), v)8' () + fy(8(y),y) =0
for all y, so in particular

0 = fx(8(¥0) y0)&'(vo) + fy(8(w0), yo) = fx(P)8 (yo) + fy(P) = fx(P)g"(vo) -
Since X is smooth and f,(P) = 0, then f,(P) # 0, so we must have g’ (yo) = 0. O

Example 13. Let E : Y2Z = X® — Z% and consider the map 77 : E — PL,[X : Y : Z]
[X : Z]. On the affine chart U, where Z # 0, E is given by the equation y* = x°> — 1 where
x = X/Z and y = Y/Z. Denoting the homogeneous coordinates of P! by S, T, then 7
carries U, to the open subset V; of P! where T # 0. On V; we have the affine coordinate
S/T, so the local expression of 7t as a map U, — Vj is simply (x,y) — x. Letting h =

y> — (x> — 1), by the above lemma, 7t is unramified at all points where h, = 2y # 0. Thus

it remains to consider the points where y = 0, consisting of (gf' ,0) for j = 0,1,2, where

is a primitive third root of unity.
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At such a point the projection (x,y) — y is a coordinate chart, so there exists a holo-
morphic function g(w) such that

0 = h(g(w),w) = w* — (g(w)’ —1)
and g(0) = ¢/. Write g(w) = Y agw", s0ag = g(0) = ¢!. Differentiating the above, we

find "=
0 = hx(g(w), w)g' (w) + hy(g(w), w) = 3¢(w)?¢’ (w) + 2w
p 2w 2w
= 8 = 5y T g
Thus
L, 20 20
m =g (0) T3500) ~ 37 0

so a1 = 0, as expected. Differentiating again, we find

ey 28(w) —wg'(w)

Then

2¢(0)—0-¢'(0) 2 ag 2.7 2.

20, = ¢""(0) = —= = - =32 —_Z7r,

1 =8 0)=-3""0p 3a? 378 3°

Thus m = 2 is the smallest n > 1 such that a, # 0, so 7 has ramification index ep(7r) = 2
for P = ({7,0). (There’s one other point we need to check; what is it?)
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